-
آرشیو :
نسخه تابستان 1398
-
موضوع :
هوش مصنوعی
-
نویسنده/گان :
احمد کاظمی، مهدی صادق زاده، امیر شیخ احمدی
-
کلید واژه :
سیستم تشخیص نفوذ، شبکه عصبی، دسته بندی کننده ی عصبی – فازی، انفیس، NSLKDD
-
Title :
Using of neuro-fuzzy classifier for intrusion detection systems
-
Abstract :
One of the tools of artificial intelligence is the adaptive neural-fuzzy inference system (ANFIS), which is used in this article to build an intrusion detection system and we call it the neural-fuzzy classifier. The Intrusion Detection System based on ANFIS is an anomaly based intrusion detection system that uses fuzzy logic and neural network to detect if malicious activity is taking place on a network. This paper describes the architecture of the ANFIS and its components.
The sample fuzzy rules are developed for some kinds of attacks and the testing results with actual network data are described. Our experiments and evaluations were performed with the NSLKDD intrusion detection dataset which is a version of the KDD Cup99 intrusion detection evaluation dataset prepared and managed by MIT Lincoln Laboratories.
-
مراجع :
Corchado, E. and Á. Herrero, Neural visualization of network traffic data for intrusion detection. Applied Soft Computing, 2011. 11(2): p. 2042-2056.
2. Hofmeyr, S.A., S. Forrest, and A. Somayaji, Intrusion detection using sequences of system calls. Journal of computer security, 1998. 6(3): p. 151-180.
3. Folino, G. and P. Sabatino, Ensemble based collaborative and distributed intrusion detection systems: A survey. Journal of Network and Computer Applications, 2016. 66: p. 1-16.
4. Sultana, N., et al., Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 2019. 12(2): p. 493-501.
5. Wu, S.-Y. and E.J.E.S.w.A. Yen, Data mining-based intrusion detectors. 2009. 36(3): p. 5605-5612.
6. Pandeeswari, N. and G. Kumar, Anomaly detection system in cloud environment using fuzzy clustering based ANN. Mobile Networks and Applications, 2016. 21(3): p. 494-505.
7. Škrjanc, I., et al., Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey. Information Sciences, 2019. 490: p. 344-368.
8. Abraham, A. and R. Jain, Soft computing models for network intrusion detection systems, in Classification and clustering for knowledge discovery. 2005, Springer. p. 191-207.
9. Faraoun, K. and A. Boukelif, Neural networks learning improvement using the K-means clustering algorithm to detect network intrusions. INFOCOMP Journal of Computer Science, 2006. 5(3): p. 28-36.
10. Dash, T., A study on intrusion detection using neural networks trained with evolutionary algorithms. Soft Computing, 2017. 21(10): p. 2687-2700.
11. Jonnalagadda, R.S.K. and R.P. Reddy, A literature survey and comprehensive study of intrusion detection. International Journal of Computer Applications, 2013. 81(16): p. 40-47.
12. Pfahringer, B., Winning the KDD99 classification cup: bagged boosting. SIGKDD explorations, 2000. 1(2): p. 65-66.
13. Ambusaidi, M.A., et al., Building an intrusion detection system using a filter-based feature selection algorithm. IEEE transactions on computers, 2016. 65(10): p. 2986-2998.
14. Beghdad, R., Critical study of supervised learning techniques in predicting attacks. Information Security Journal: A Global Perspective, 2010. 19(1): p. 22-35.
15. Gomez, J. and D. Dasgupta. Evolving fuzzy classifiers for intrusion detection. in Proceedings of the 2002 IEEE Workshop on Information Assurance. 2002. New York: IEEE Computer Press.
16. Jirapummin, C., N. Wattanapongsakorn, and P. Kanthamanon. Hybrid neural networks for intrusion detection system. in Proc. of ITC–CSCC. 2002.
17. Horeis, T., Intrusion detection with neural networks–combination of self-organizing maps and radial basis function networks for human expert integration. Computational Intelligence Society Student Research Grants, 2003.
18. Han, S.-J. and S.-B. Cho, Evolutionary neural networks for anomaly detection based on the behavior of a program. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005. 36(3): p. 559-570.
19. Chen, Y., A. Abraham, and B. Yang, Hybrid flexible neural‐tree‐based intrusion detection systems. International journal of intelligent systems, 2007. 22(4): p. 337-352.
20. Toosi, A.N. and M. Kahani, A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classifiers. Computer communications, 2007. 30(10): p. 2201-2212.
21. Ghosh, S., et al., Network anomaly detection using a fuzzy rule-based classifier. Computer, Communication and Electrical Technology, 2017: p. 61-65.
22. Negnevitsky, M. and A. Intelligence, A guide to intelligent systems. Artificial Intelligence, 2nd edition, pearson Education, 2005.
23. Jang, J.-S., ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 1993. 23(3): p. 665-685.
24. Beghdad, R., Critical study of neural networks in detecting intrusions. Computers & security, 2008. 27(5-6): p. 168-175.
25. Panda, M., A. Abraham, and M.R. Patra, Hybrid intelligent systems for detecting network intrusions. Security and Communication Networks, 2015. 8(16): p. 2741-2749.
- صفحات : 23-32
-
دانلود فایل
( 687 KB )