-
آرشیو :
نسخه پاییز 1398
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1348
-
موضوع :
سایر شاخه های علوم رایانه
-
نویسنده/گان :
امیراحمد نیری
-
کلید واژه :
داده کاوی، شبکه های عصبی، تشخیص آریتمی قلبی، ترکیب خبره ها
-
Abstract :
Heart disease is one of the most common types of disease With high rates of mortality. Arrhythmias are abnormal beats, which make the heart work too fast (tachycardia) or very slowly (bradycardia). The purpose of this research is to provide a different model based on the data mining technique. Which has the ability to normal rate and five abnormal rate of the heart. The present study was a diagnostic study conducted on UCI datasets includes 452 samples and 279 features. To determine the type of arrhythmia, all samples are classified into five general categories. In this study the combination of neural networks in a hierarchical way (mixture of experts) was produced. In all networks, 70% of the samples were used for training and 30% were used for testing. After modeling and comparing the produced models, the accuracy of the prediction of arrhythmia was 89.5% when using a neural network and 93.5% of the hierarchical order of the experts. one of the researchers' goals is Reducing the diagnostic error of heart arrhythmia. Using data mining methods can help reduce this error. This study, with the help of data mining, diagnosis of cardiac arrhythmia, suggests that providing a more robust method of combining neural networks in a hierarchical manner leads to improved diagnostic accuracy.
-
مراجع :
1. American Heart Association. [On Line]. Available on URL : http://www.heart.org/ HEARTORG.
2. Amani F, Kazemnejad A, Habibi R, Hajizadeh E. Pattern of mortality trend in Iran during 1970-2009. Journal of Gorgan University of Medical Sciences. 2011;12(4).
3. Narouee.i and Zamani.B, Diagnosis of Cardiac Arrhythmia Using Fisher Method and Minimal Squares Support Mechanism, Electronic Conference on New Research in Science and Technology, 1394.
4. Samad S, Khan SA, Haq A, Riaz A. Classification of arrhythmia. International Journal of Electrical Energy. 2014 Mar;2(1):57-61.
5. Jadhav SM, Nalbalwar SL, Ghatol AA. ECG arrhythmia classification using modular neural network model. In2010 IEEE EMBS conference on biomedical engineering and sciences (IECBES) 2010 Dec 2 (pp. 62-66). IEEE.
6. S. M. Jadhav, S. L. Nalbalwar, and A. Ghatol, “Artificial neural network based cardiac arrhythmia classification using ECG signal data,” in Electronics and Information Engineering (ICEIE), 2010 International Conference On, 2010, vol. 1, pp. V1-228.
7. Sameni R, Shamsollahi MB, Jutten C, Clifford GD. A nonlinear Bayesian filtering framework for ECG denoising. IEEE Transactions on Biomedical Engineering. 2007 Nov 19;54(12):2172-85.
8. Mannurmath JC, Raveendra M. MATLAB based ECG signal classification. International Journal of Science, Engineering and Technology Research (IJSETR). 2014 Jul;3(7):1946-50.
9. Mitra M, Samanta RK. Cardiac arrhythmia classification using neural networks with selected features. Procedia Technology. 2013 Jan 1;10:76-84.
10. Mahmoodabadi SZ, Ahmadian A, Abolhasani MD, Eslami M, Bidgoli JH. ECG feature extraction based on multiresolution wavelet transform. In2005 IEEE Engineering in Medicine and Biology 27th Annual Conference 2006 Jan 17 (pp. 3902-3905). IEEE.
11. Kohli N, Verma NK. Arrhythmia classification using SVM with selected features. International Journal of Engineering, Science and Technology. 2011;3(8):122-31.
12. Saritha C, Sukanya V, Murthy YN. ECG signal analysis using wavelet transforms. Bulg. J. Phys. 2008 Feb;35(1):68-77.
13. Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:1707.01836. 2017 Jul 6.
14. Pyakillya B, Kazachenko N, Mikhailovsky N. Deep learning for ECG classification. InJournal of physics: conference series 2017 Oct (Vol. 913, No. 1, p. 012004). IOP Publishing.
15. K. Bache and M. Lichman, “UCI machine learning repository.” 2013.
16. Zhou ZH. Ensemble methods: foundations and algorithms. Chapman and Hall/CRC; 2012 Jun 6.
17. Leutheuser, H., Gradl, S., Kugler, P., Anneken, L., Arnold, M., Achenbach, S. and Eskofier, B.M., 2014, August. Comparison of real-time classification systems for arrhythmia detection on Android-based mobile devices. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2690-2693). IEEE.
18. de Medeiros TF, de Lima Borges EV, Cavalcante BÉ, Cavalvanti AB, Andrezza IL, Batista LV. Heart arrhythmia classification using the PPM algorithm. InISSNIP Biosignals and Biorobotics Conference 2011 2011 Jan 6 (pp. 1-5). IEEE.
19. Dilmac S, Korurek M. A new ECG arrhythmia clustering method based on modified artificial bee colony algorithm, comparison with GA and PSO classifiers. In2013 IEEE INISTA 2013 Jun 19 (pp. 1-5). IEEE..
20. Hadjem, M. and Naït-Abdesselam, F., 2015, June. An ECG T-wave anomalies detection using a lightweight classification model for wireless body sensors. In 2015 IEEE International Conference on Communication Workshop (ICCW) (pp. 278-283). IEEE..
21. Zeraatkar E, Kermani S, Mehridehnavi A, Aminzadeh A, Zeraatkar E, Sanei H. Arrhythmia detection based on morphological and time-frequency features of T-wave in electrocardiogram. Journal of medical signals and sensors. 2011 May;1(2):99.
22. Waseem K, Javed A, Ramzan R, Farooq M. Using evolutionary algorithms for ecg arrhythmia detection and classification. In2011 Seventh International Conference on Natural Computation 2011 Jul 26 (Vol. 4, pp. 2386-2390). IEEE.
23. Khazaee A. Heart beat classification using particle swarm optimization. International Journal of Intelligent Systems and Applications. 2013 May 1;5(6):25.
24. Das MK, Ari S. ECG beats classification using mixture of features. International scholarly research notices. 2014;2014.
25. Jadhav SM, Nalbalwar SL, Ghatol AA. Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data. International Journal of Computer Applications. 2012 Apr 30;44(15):8-13.
26. Rai HM, Trivedi A, Shukla S, Dubey V. ECG arrhythmia classification using daubechies wavelet and radial basis function neural network. In2012 Nirma University International Conference on Engineering (NUiCONE) 2012 Dec 6 (pp. 1-6). IEEE.
27. Ahmed AF, Owis MI, Yassine IA. Novel Bayesian classifier discriminant function optimization strategies for arrhythmia classification. InIEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) 2014 Jun 1 (pp. 693-696). IEEE.
28. Rodríguez R, Mexicano A, Bila J, Cervantes S, Ponce R. Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. Journal of applied research and technology. 2015;13(2):261-9.
29. Sutar RG, Kothari AG. Intelligent electrocardiogram pattern classification and recognition using low-cost cardio-care system. IET Science, Measurement & Technology. 2015 Feb 26;9(1):134-43.
30. Jatmiko W, Setiawan IM, Akbar MA, Suryana ME, Wardhana Y, Rachmadi MF. Automatic Arrhythmia beat detection: algorithm, system, and implementation. Makara Journal of Technology. 2016 Aug 30;20(2):82-92.
31. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, San Tan R. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Applied Intelligence. 2019 Jan 15;49(1):16-27.
32. Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, San Tan R, Chen M, Acharya UR. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Computers in biology and medicine. 2018 Mar 1;94:19-26.
33. Ramirez F, Allende-Cid H, Veloz A, Allende H. Neuro-fuzzy-based arrhythmia classification using heart rate variability features. In2010 XXIX International Conference of the Chilean Computer Science Society 2010 Nov 15 (pp. 205-211). IEEE..
34. Debnath T, Biswas T, Ashik MH, Dash S. Auto-Encoder Based Nonlinear Dimensionality Reduction of ECG data and Classification of Cardiac Arrhythmia Groups Using Deep Neural Network. In2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT) 2018 Sep 13 (pp. 27-31). IEEE.
- صفحات : 16-22
-
دانلود فایل
( 388.54 KB )