-
آرشیو :
نسخه بهار 1399 - جلد اول
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1359
-
موضوع :
سایر شاخه های علوم رایانه
-
نویسنده/گان :
حامد بابایی، جابر کریم پور، امید جوانشیر
-
کلید واژه :
چراغ راهنمایی و رانندگی، یادگیری ماشین، پردازش تصویر
-
Abstract :
The number of users of driver assistance systems is increasing day by day. Increased car accidents, increased cost of living, financial and road safety, and traffic are the drivers of using driver assistance systems. Driver assistance systems can include speed controller, traffic signal detection, car detection and vehicle type. One of the most important driver assistance systems is the traffic light detection system. In recent years, researchers have been focusing on automatic detection of traffic lights. Accordingly, this thesis presents a method for identifying traffic lights by focusing on the red light. This thesis uses machine learning and image processing tools. Color transformation and statistical properties such as mean, median were used to extract the feature from the image. After selecting the feature, the nearest neighbor classification is used to identify the red light. The results were compared with the support vector machine and decision tree classifiers. The results showed that the proposed method can provide an acceptable performance in the detection of traffic lights. Therefore, the efficiency of the proposed method was evaluated on the basis of accuracy, recall and precision criteria, which were 94.65, 96.37 and 92.15%, respectively.
-
مراجع :
اسماعیلی، مهدی ، مفاهیم و تکنیک¬های داده¬کاوی، انتشارات نیاز دانش، 1391
فنی، الهام.، خدایاری، علی، ارائه یک الگوریتم پردازش تصویر هوشمند جدید برای تشخیص و شناسایی علائم راهنمایی و رانندگی مبتنی بر منطق فازی، نشریه مهندسی مکانیک، 1397: دوره 5، شماره 1، 218-207
فرامرزی اسماعیل ، بازشناسی نوری حروف: مروری بر مباحث نظری و ملاحظات کاربردی با تاکید بر مسائل خاص زبان فارسی ، مجله علوم اطلاع رسانی،1384: دوره 20، شماره 3 و 4
عمرانی، احسان.، محتسبی، سید.سارا، رفیعی، شهرام.، حسین پور، سهیل.، عقیلی، نیما، تشخیص بیماریهای برگی درخت سیب با استفاده از تکنیک آنالیز تصویر،بی جا، بی نا، 1392
D, Hue., S. Jio., G. Qin (2010).; A Fruit Size Detecting and Grading System Based on Image Processing; International Conference on Intelligent Human-Machine Systems and Cybernetics, pp. 83-86
D. G. Lowe, (2004), Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, vol. 60, pp- 91-110
D. Houcque, (2005), (version 1.2): D. Manolakis., D. Marden., G. A. Shaw, (2003), , Vol.13, No.1
E. A. Mueller, (1970), Vol 19, No.1, 1970 : F. J. Seinstra, J. M. Geusebroek, D. Koelma, C. G. M. Snoek, , vol. 14, pp- 64–75
F. Zaklouta and B. Stanciulescu, (2014), , vol. 62, pp-16–24
H, Symon. (1994). Neural networks: a comprehensive foundation. New York, USA: Macmillan Publishing.
J. C. Kwak, T. R. Park, Y. S. Koo, and K. Y. Lee, (2013), , 2013 IEEE, pp- 2000–2004
J.P. Mercol., J. Gambini., J. M. Santos, (2007), Automatic classification of oranges using image processing and data mining techniques
J. Verne, (2005), Image Pre-Processing
L. He, H. Wang, and H. Zhang, (2011), Object detection by parts using appearance, structural and shape features, in2011 IEEE International Conference on Mechatronics and Automation, pp- 489–494
M. Abualkibash, A. Mahmood, and S. Moslehpour, (2015), A near real-time, parallel and distributed adaptive object detection and retraining framework based on adaboost algorithm, in High Performance Extreme Computing Conference (HPEC), IEEE, pp- 1–8
M. Diaz-Cabrera, P. Cerri, and P. Medici, (2015), Robust real-time traffic light detection and distance estimation using a single camera, Expert Syst. Appl., vol. 42, pp- 3911–3923
M. Nabeel, D. Ustarbowski,(2016), Evaluation of traffic light detection algorithms for automated video analysis, Master’s thesis in Software Engineering, Chalmers University of Technology
M. Mohammad, A. Srujana, A. Jyothi, P. Sundari, (2016); Disease Identification in Plants Using K-means Clustering and Gray Scale Matrices with SVM Classifier; nternational Journal of Applied Sciences, Engineering and Management, Vol. 5, no. 2, pp- 84-88
M. Simic and R. Krerngkamjornkit, (2014), Multi object detection and tracking from video file, in Modern Tendencies in Engineering Sciences, vol. 533 of Applied Mechanics and Materials, pp- 218–225, Trans Tech Publication
- صفحات : 43-53
-
دانلود فایل
( 832.17 KB )