-
آرشیو :
نسخه پاییز 1399
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1373
-
موضوع :
سایر شاخه های علوم رایانه
-
نویسنده/گان :
مصطفی عبدالهیان دهکردی، مهدی محمدی
-
کلید واژه :
تصاویر دیجیتالی، پردازش تصویر، داده کاوری، حذف نویز، فیلتر فازی.
-
Title :
Provide a fuzzy filter design for enhancing the quality of noise corrupted images
-
Abstract :
In image processing, both diagnosis of noise types and filter design are critical. Conventional filtering techniques for image restoration such as median filter and mean filter are not effective in many cases, such as the case lacking the information of noise types or the case having mixed noise in images. This paper develops a data mining approach for noise type diagnosis, and proposes a fuzzy filter design for enhancing the quality of noise corrupted images. The experimental results demonstrate that the proposed technique outperforms the conventional filters, particularly for dealing with the images corrupted by mixed noise with additive Gaussian noise and impulse noise.
-
key words :
Digital images, Image processing, Data maning, Noise removal, Fuzzy filter
-
مراجع :
[1] Chakravorty. P.(2018). What is a signal? [lecture notes]. IEEE Signal Processing Magazine.;35(5):175-177. DOI:10.1109/MSP.2018.2832195
[2] Gonzalez. R.(2018). Digital image processing. New York, NY: Pearson; ISBN: 978-0-13-335672-4. OCLC 966609831
[3] Sarfraz. M.(2020). Introductory Chapter: On Digital Image Processing. InDigital Imaging 2020 May 13. IntechOpen.
[4] Josep. Arnal.. Luis. Súcar.(2020). Hybrid Filter Based on Fuzzy Techniques for Mixed Noise Reduction in Color Images. Appl. Sci. 10, 243; doi:10.3390/app10010243.
[5] Wang. C.. Yan. Z..& Pedrycz. W.(2020). Zhou M, Li Z. A weighted fidelity and regularization-based method for mixed or unknown noise removal from images on graphs. IEEE Transactions on Image Processing. 2020 Feb 25;29:5229-43.
[6] Jindal. K.. Kumar. R.(2016). A Note on “Data mining based noise diagnosis and fuzzy filter design for image processing”. Computers & Electrical Engineering. 2016 Jan 1;49:50-1.
[7] Wang. Y.. Wu. G..& Chen. GS.(2014). Chai T. Data mining based noise diagnosis and fuzzy filter design for image processing. Computers & Electrical Engineering. 2014 Oct 1;40(7):2038-49.
[8] Liu. J.. Huan. ZD.. Huang. HY..& Zhang. HL.(2009). An adaptive method for recovering image from mixed noisy data. Int J Comput Vis; 85(2):182–91.
[9] Chan. RH.. Dong. Y.(2010). Hintermuller M. An efficient two-phase L1–TV method for restoring blurred images with impulse noise. IEEE Trans Image Process;19(7):1731–9.
[10] Cai. JF.. Chan. R..& Nikolova. M.(2008). Two-phase methods for deblurring images corrupted by impulse plus gaussian noise. Inverse Problem Imag; 2(2):187–204.
[11] Cai. JF.. Chan. RH..& Nikolova. M.(2010). Fast two-phase image deblurring under impulse noise. J Math Imag Vis;36(1):46–53.
[12] Zhang. B. Fadili. MJ. Starck. JL. & Olivo-Marin. JC (2007). Multiscale variance stabilizing transform for mixed-Poisson–Gaussian processes and its application in bioimaging. In: Proceedings of IEEE international conference on image processing; p.233–6.
[13] Morillas. S.. Gregori. V..& Hervas. A.(2009). Fuzzy peer groups for reducing mixed Gaussian-impulse noise from color images. IEEE Trans Image Process;18(7):1452–66.
[14] Yang. JX.. Wu. HR.(2009). Mixed Gaussian and uniform impulse noise analysis using robust estimation for digital images. In: Proceedings of the 16th international conference on digital signal processing; p. 468–72.
[15] Lopez-Rubio. E.(2010). Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recogn;43(5):1835–46.
[16] Ji. LP.. Zhang. Y.(2008). A mixed noise image filtering method using weighted-linking PCNNs. Neurocomputing;71(13–15):2986–3000.
[17] Huang. YM.. Ng. MK..& Wen. YW.(2009). Fast image restoration methods for impulse and Gaussian noise removal. IEEE Signal Proc Lett;16(6):457–60.
[18] Ghita. O.. Whelan. PF.(2010). A new GVF-based image enhancement formulation for use in the presence of mixed noise. Pattern Recogn;43(8):2646–58.
[19] Lin. CH.. Tsai. JS..& Chiu. CT.(2010). Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Trans Image Process;19(9):2307–20.
[20] Miller. G.. Martz. HF.. Little. TT..& Guilmette. R.(2002). Using exact poisson likelihood functions in Bayesian interpretation of counting measurements. Health Phys;83(4):512–8.
[21] Brodsky. A.(1992). Exact calculation of probabilities of false positives and false negatives for low background counting. Health Phys; 63(2):198–204.
[22] Wang. LX..Mendel. JM.(1992). Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybernet; 22(6):1414–27.
[23] Wang. LX.(2003). The WM method completed: a flexible fuzzy system approach to data mining. IEEE Trans Fuzzy Syst;11(6):768–82.
[24] Wang. YF.. Wang. DH..& Chai. TY.(2011). Extraction and adaptation of fuzzy rules for friction modeling and control compensation. IEEE Trans Fuzzy Syst; 19(4):682–93.
- صفحات : 1-18
-
دانلود فایل
( 1.57 MB )