-
آرشیو :
نسخه بهار 1400
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1379
-
موضوع :
سایر شاخه های علوم رایانه
-
نویسنده/گان :
محمد حسین زارع، علیرضا دهقانی
-
کلید واژه :
داده کاوی، الگوریتم خوشه بندی، الگوریتم درخت.
-
مراجع :
[1] KS, D., & Kamath, A. (2017). Survey on Techniques of Data Mining and its Applications.
[2] Huang, R. J. P., Depari, G. S., Riorini, S. V., & Wang, P. C. (2018). Leveraging Social Media Metrics in Improving Social Media Performances through Organic Reach: A Data Mining Approach. Review of Economic and Business Studies, 11(2), 33-48..
[3] Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130.
[4] Jeffery W. Seifert , Analyst in information science and Technology Policy, ‘ Data
[5] Mining : An Overview ‘ December 2004.
[6] Sondwale, P. P. (2015). Overview of predictive and descriptive data mining techniques. International Journal of Advanced Research in Computer Science and Software Engineering, 5(4), 262-265.
[7] Li, F., Qian, Y., Wang, J., Dang, C., & Jing, L. (2019). Clustering ensemble based on sample's stability. Artificial Intelligence, 273, 37-55.
[8] Gupta, M. K., & Chandra, P. (2019, March). A comparative study of clustering algorithms. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 801-805). IEEE.
[9] Kim, T., Chen, I. R., Lin, Y., Wang, A. Y. Y., Yang, J. Y. H., & Yang, P. (2019). Impact of similarity metrics on single-cell RNA-seq data clustering. Briefings in bioinformatics, 20(6), 2316-2326.
[10] Chitra, K., & Maheswari, D. (2017). A comparative study of various clustering algorithms in data mining. International Journal of Computer Science and Mobile Computing, 6(8), 109-115.
[11] Pascu, A. I. (2018). DATA MINING. CONCEPTS AND APPLICATIONS IN BANKING SECTOR. Annals of'Constantin Brancusi'University of Targu-Jiu. Economy Series, (1).
[12] Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.
[13] Hahsler, M., & Karpienko, R. (2017). Visualizing association rules in hierarchical groups. Journal of Business Economics, 87(3), 317-335.
[14] Kumar, B. S. (2019). Data Mining: Clustering. Journal of the Gujarat Research Society, 21(14), 2021-2037.
[15] Harakawa, R., Takimura, S., Ogawa, T., Haseyama, M., & Iwahashi, M. (2019). Consensus Clustering of Tweet Networks via Semantic and Sentiment Similarity Estimation. IEEE Access, 7, 116207-116217.
[16] KADHIM, M. R., TIAN, W., & KHAN, T. (2019, December). Rapid Clustering with Semi-Supervised Ensemble Density Centers. In 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing (pp. 230-235). IEEE.
[17] Cai, Z., Yang, X., Huang, T., & Zhu, W. (2020). A new similarity combining reconstruction coefficient with pairwise distance for agglomerative clustering. Information Sciences, 508, 173-182.
[18] Gupta, M. K., & Chandra, P. (2019, March). A comparative study of clustering algorithms. In 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 801-805). IEEE.
[19] Kim, T., Chen, I. R., Lin, Y., Wang, A. Y. Y., Yang, J. Y. H., & Yang, P. (2019). Impact of similarity metrics on single-cell RNA-seq data clustering. Briefings in bioinformatics, 20(6), 2316-2326.
[20] Al Alawi, M., Ray, S., & Gupta, M. (2019). A New Framework for Distance-based Functional Clustering.
[21] Gupta, M. K., & Chandra, P. (2020). An Empirical Evaluation of K-Means Clustering Algorithm Using Different Distance/Similarity Metrics. In Proceedings of ICETIT 2019 (pp. 884-892). Springer, Cham.
[22] Gupta, M. K., & Chandra, P. HYBCIM: Hypercube Based Cluster Initialization Method for k-means.
[23] Huang, T., Wang, S., & Zhu, W. (2020). An adaptive kernelized rank-order distance for clustering non-spherical data with high noise. International Journal of Machine Learning and Cybernetics, 1-13.
[24] Ramírez-Gallego, S., Krawczyk, B., García, S., Woźniak, M., & Herrera, F. (2017). A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing, 239, 39-57.
[25] Wang, X., Yang, S., Zhao, Y., & Wang, Y. (2018). Lithology identification using an optimized KNN clustering method based on entropy-weighed cosine distance in Mesozoic strata of Gaoqing field, Jiyang depression. Journal of Petroleum Science and Engineering, 166, 157-174.
Kadhim, A. I. (2019). Survey on supervised machine learning techniques for automatic text classification. Artificial Intelligence Review, 52(1), 273-292
- صفحات : 90-100
-
دانلود فایل
( 445.88 KB )