-
آرشیو :
نسخه زمستان 1396
-
موضوع :
سایر شاخه های علوم رایانه
-
نویسنده/گان :
بهنوش داریوشی ، مرتضی زلف پور آرخلو
-
کلید واژه :
مسائل دشوار، مسائل رام، NP-complete، ارضاپذیری فرمول K-SAT، Hamiltonian، همبستگی، تغییر فاز، رفتار آستانه ای.
-
Title :
Physically Inspired Method for Solving Interactable Problems
-
مراجع :
[1] S. Arora and B. Boaz, “Computational Complexity: A Modern Approach”, Cambridge University Press, 2009.
[2] J. Hromkovic, “Theoretical Computer Science, Springer, 2010.
[3] G. Chaitin, “Thinking about Godel and Turing: Esays on Complexity”, Word Scientific, 2007.
[4] J. Hromkovic, “Algorithms for Hard Problems: Introduction to Combinatorial Optimization, Randomization, Approximation and Heuristics”, Springer, 2004.
[5] A. Percus, G. Istrate, C. Moore(Editors), “Computational Complexity and Statistical Physics”, Oxford University Press, 2006.
[6] R. Marino, G. Prisi, F. Ricci-Tersenghi, “The Backtracking Survey Propagation Algorithm for Solving Random K-SAT Problems”, Nature Communication, Vol. 7, 12996, 2016.
[7] S. Kirkpatrick, B. Selman, “Critical Behavior in The Satisfiability of Random Boolean Expression”, Science, Vol. 264, pp. 1297-1301, 1994.
[8] R. Monasson, R. Zecchina, S. Krikpatrick, B. Selman, L. Troyansky, “Determining Computational Complexity from Characteristic Phase transitions”, Nature, Vol. 400, pp. 133-137, 1999.
[9] M. Mezard, A. Montanari, “Information, Physics and Computation”, Oxford University Press, 2009.
[10] J. Ding, A. Sly, N. Sun, “Proof of The Satisfiability Conjecture for Large K”, Proceedings of the Forty-Seventh Annual ACM on Symposium on The Theory of Computing, USA, 2015.
[11] S. Mertens, M. Mezard, R. Zecchina, “Threshold Values of Random K-SAT from the Cavity Method”, Random structures and Algorithms, Vol. 28, pp. 340-373, 2006.
[12] A. Montanari, F. Ricci-Tersenghi, G. Semerjian, “Clusters of Solutions and Replica Symmetry Breaking in Random K-Satisfiability”, Journal of Statistical Mechanics, pp. 04004, 2008.
[13] D. Achlioptas, F. Ricci-Tersenghi, “On The Solution-Space geometry of Random Constraint satisfaction Problems”, Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, Seattle, 2006.
[14] J.H. Zhao, H.J. Zhou, “Statistical Physics of Hard Combinatorial Optimization: Vertex Cover Problem”, Chinese Physics B, Vol. 23, N. 7, 2014.
[15] L. Zdeborova, “Statistical Physics of Hard Optimization Problems”, Phd thesis, Charles University of Prague, 2008.
- صفحات : 109-117
-
دانلود فایل
( 507 KB )