-
آرشیو :
نسخه بهار 1397
-
موضوع :
2
-
نویسنده/گان :
افسون سروقد ، پویا روزبه جوان ، عرفانه نوروزی
-
کلید واژه :
s:130:"Natural language processing, Text coherence evaluation, word vector space, Local coherence evaluation, Global coherence evaluation";
-
Title :
Local and global text coherence evaluation using statistical features
-
Abstract :
s:346:"The most important feature of the proposed model is the ability to simultaneously assess high precision local and global coherence in large and high-number sentences. The combined presented local and global coherence evaluation method does not depend on subject matter and words concept, and has the ability to extend and apply to other languages";
-
مراجع :
s:13896:"Blanco, R., & Lioma, C. (2012). Graph-based term weighting for information retrieval. Information retrieval, Vol 15, No. 1, pp. 54-92.
Parveen, D., & Strube, M. (2015). Integrating importance, non-redundancy and coherence in graph-based extractive summarization. in proc the twenty-fourth international joint conference on artificial intelligence (IJCAI). pp. 1298–1304.
Zhang, R. (2011). Sentence ordering driven by local and global coherence for summary generation. In proc the ACL-HLT 2011 student session 6–11.
Celikyilmaz, A., & Hakkani-Tur, D. (2011), Discovery of topically coherent sentences for extractive summarization. In proc the 49th annual meeting of the association for computational linguistics, 491–499.
Ferreira, T. C., Krahmer, E., & Wubben, S. (2016). Towards more variation in text generation: Developing and evaluating variation models for choice of referential form. In proc of the 54th annual meeting of the association for computational linguistics.1, 568-577.
Fox, H. J. (2002). Phrasal cohesion and statistical machine translation. In proc the conference on empirical methods in natural language processing (EMNLP), 304-311.
Lin, Z., Liu, C., Ng., H. T., & Kan, M., (2012). Combining coherence models and machine translation evaluation metrics for summarization evaluation. In proc the 50th annual meeting of the association for computational linguistics, 1, 1006–1014.
Xiong, D., Ding, Y., Zhang, M., & Tan, C. L. (2013). Lexical chain-based cohesion models for document-level statistical machine translation. In proc 2013 conference on empirical methods in natural language processing, 1563–1573.
Zhang, M., Feng. V. W., Qin, B., Hirst, G., Liu, T., & Huang, J. (2015). Encoding world knowledge in the evaluation of local coherence. in proc of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies. 1087-1096.
[10] پورمعصومی، آ. صدوقی یزدی، ه. قائمی، ه و دلخسته. ز (۱۳۹۵). آنالیز حس اسناد فارسی با طراحی حوزه تبدیل بهینه. نشریه مهندسی برق و مهندسی کامپیوتر ایران. (۱۴)۲.
[11] گلپر رابوکی، ع. ضرغامی فر، س، و رضایی نور، ج (۱۳۹۵). استخراج ویژگی ها و بسط لغت نامه در اندیشه کاوی مورد استفاده در متون فارسی. نشریه مهندسی برق و مهندسی کامپیوتر ایران، (۱۴)۳.
[12] نوری هفت چشمه، ک. خدادادی، ر. اکبری، ی . رضوی، س. م، و احمدی ترشیزی. ح (۱۳۹۵). تشخیص جنسیت نویسنده مستقل از متن و زبان نوشتاری با استفاده از پالایش پویای نمادین مبتنی بر تبدیل رادان. نشریه مهندسی برق و مهندسی کامپیوتر ایران، (۱۴)۴.
[13] عباسی، ف. سهرابی، ب. مائیان، ا. و خدیور، آ (۱۳۹۶). ارائه مدلی جهت دسته بند احساسات خریداران کتاب با استفاده از رویکرد ترکیبی. فصلنامه مطالعات مدیریت کسب و کار هوشمند، (۶)۲۱، ۶۵- ۹۲.
[14] کشاورزیان، س. و براردخت، ح (۱۳۹۶). جایگاه کتاب و کتابخوانی در سایت تبیان با رویکرد متن کاوی و تحلیل شبکههای اجتماعی. فصلنامه مطالعات مدیریت کسب و کار هوشمند، (۶)۲۱ْ ۱۶۹- ۱۸۸.
[15] امیری٬ م. ختن لو٬ ح. (۱۳۹۲). خوشه بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی. فصلنامه علمی پژوهشی فنآوری اطلاعات و ارتباطات ایران. (۵)۱۷،۱۸
[16] میردامادی، م. م. زارع بیدکی، ع. م،و رضاییان، م (۱۳۹۳). قطعه بندی عبارات متون فارسی با استفاده از شبکه های عصبی. نشریه مهندسی برق و مهندسی کامپیوتر ایران، (۱۱)۲.
[17] برنجيان شاپوررضا، دستغيب محمد باقر، جستجوگر واژههاي مصوب فرهنگستان زبان و ادب فارسي و واژههاي معادل و رايج آنها در سيستمهاي بازيابي اطلاعات، مجله علمی پژوهش در علوم رایانه، شماره 12، زمستان 1397، ص25-38.
Higgins, D., Burstin, J., Marcu, D., & Gentile, C. (2004). Evaluating multiple aspects of coherence in student essays. In proc. NAACL-HLT. 185- 192.
Burstein, J., Tetreault, J., & Andreyev, S. (2010). Using entity-based features to model coherence in student essays. In proc NAACL-HLT. 681-684.
Yannakoudakis, H., & Briscoe, T. (2012). Modeling coherence in ESOL learner texts. In proc the seventh workshop on building educational applications using NLP, 33-43.
Huang, G., Tan, M., Huang, S., Mo, R., & Zhou, Y. (2017). A discourse coherence model for analyzing Chinese students' essay. In progress in informatics and computing (PIC).430-434: IEEE.
Arunsirot, S. (2013). An analysis of textual metafunction in Thai EFL students' writing. Novitas-ROYAL (Research on Youth and Language), (7)2, 160-174.
Luhn, H. P. (1958). A business intelligence system. IBM journal of research and development, Vol. 2, No. 4, pp. 314-319.
Halliday, M. A. K., & Hasan, R. (1976). Cohesion in English, ed: London: longman.
Iyyer, M., Manjunatha, V., Boyd-Graber, J., & Daume, H. (2015). Deep unordered composition rivals’ syntactic methods for text classification. In proc of the 53rd annual meeting of the association for computational linguistics.1, 1681-1691.
Wieting, J., Bansal, M., Gimpel, K., & Livescu, K. (2016). Embedding words and sentences via character n-grams. in proc of the 2016 conference on empirical methods in natural language processing, Austin. 1504–1515
Abdolahi, M., & Zahedi, M. (2017). Sentence matrix normalization using most likely n-grams vector. presented at the 2017 IEEE 4th international conference on knowledge-based engineering and innovation (KBEI), Tehran, Iran.
Foltz, P. W., Kintsch, W., & Landauer, T. K. (1998). The measurement of textual coherence with latent semantic analysis. Discourse processes, Vol. 25, No. 2, pp. 285-307.
Barzilay, R., & Lapata, M. (2008). Modeling local coherence: An entity-based approach, Computational linguistics, Vol. 34, No. 1, pp. 1-34.
Putra, G. V. G., & Tokunaga, T. (2017). Evaluating text coherence based on semantic similarity graph. In proc of TextGraphs-11: the workshop on graph-based methods for natural language processing. 76-85.
Xu, F., Du, S., Li, M., & Wang, M. (2017). An entity-driven recursive neural network model for chinese discourse coherence modeling. arXiv preprint arXiv:1704.04336.
Lioma, C., Tarissan, F., Simonsen, J. G., Petersen, G., & Larsen, B. (2016). Exploiting the bipartite structure of entity grids for document coherence and retrieval. In proc of the 2016 ACM international conference on the theory of information retrieval. 11-20.
Guinaudeau, C., & Strube, M. (2013), Graph-based local coherence modeling. In proc of the 51st annual meeting of the association for computational linguistics, 1, 93-103.
Petersen, C., Lioma, C., Simonsen, J. G., & Larsen. B. (2015). Entropy and graph-based modeling of document coherence using discourse entities: An application to IR. In proc of the 2015 international conference on the theory of information retrieval.191-200: ACM.
Mesgar, M., & Strube, M. (2015). Graph-based coherence modeling for assessing readability. In proc of the fourth joint conference on lexical and computational semantics. 309- 318.
[36] عبدالهی، م، و زاهدی، م (۱۳۹۶). بهبود روشهای ارزیابی انسجام متن با ترکیب مزایای سه رویکرد مبتنی بر موجودیت، گراف و آنتروپی. سومین کنفرانس بین المللی بازشناسی الگو و تحلیل تصویر ایران.
Xiong, D., Zhang, M., & Wang, X. (2015). Topic-based coherence modeling for statistical machine translation. IEEE/ACM transactions on audio, speech and language processing (TASLP), Vol. 23, No. 3, pp. 483-493.
Somasundaran, S., Burstein, J., & Chodorow, M. (2014). Lexical chaining for measuring discourse coherence quality in test-taker essays. in proceedings of COLING 2014, the 25th international conference on computational linguistics: Technical papers. 950- 961.
Nguyen, D. T., & Joty, S. (2017). A neural local coherence model. In proc of the 55th annual meeting of the association for computational linguistics. 1, 1320-1330.
Logeswaran, L., Lee, H., & Radev, D. (2016). Sentence ordering using recurrent neural networks, arXiv preprint arXiv:1611.02654.
Logeswaran, L., Lee, H., & Radev, D. (2018). Sentence Ordering and Coherence Modeling using Recurrent Neural Networks. arXiv:1611.02654 [cs.CL].5285-5292.
Li, J., & Jurafsky, D. (2016). Neural net models for open-domain discourse coherence. arXiv preprint arXiv:1606.01545.
Kiddon, C., Zettlemoyer, L., & Choi, Y. (2016). Globally coherent text generation with neural checklist models. In proc of the 2016 conference on empirical methods in natural language processing. 329- 339.
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Zhang, X., & LeCun, Y. (2015). Text understanding from scratch, arXiv preprint arXiv:1502.01710.
Christensen, J., Soderland, S., & Etzioni, O. (2013). Towards coherent multi-document summarization. In proc of the 2013 conference of the North American chapter of the association for computational linguistics: Human language technologies. 1163- 1173.
Zhang, R., Li, W., Liu, N., & Gao, D. (2016). Coherent narrative summarization with a cognitive model. Computer speech & language, Vol. 35, pp. 134-160.
Gambhir, M., &Gupta, V. (2017). Recent automatic text summarization techniques: a survey. Artificial intelligence review, Vol. 47, No. 1, pp. 1-66.
Liu, P. J. (2018). Generating Wikipedia by summarizing long sequences, arXiv preprint arXiv:1801.10198.
[50] کيومرثی فرشاد، بختياري شقایق، هادي پور مریم، خلاصه سازي خودکار متن با استفاده از کلونی زنبورعسل، مجله علمی پژوهش در علوم رایانه، شماره 6، زمستان 1396، ص46-59.
[51] محسنی علیرضا، ونوس مرضی، جدیدي نژاد امیر حسین، خلاصه سازي تک سندي متون فارسی به کمک یادگيري عميق ماشينی، مجله علمی پژوهش در علوم رایانه، شماره 12، زمستان 1392، ص1-16.
Han, A. F., & Wong, D. F. (2016). Machine translation evaluation: A survey, arXiv preprint arXiv:1605.04515.
Sim Smith, K. (2018). Coherence in Machine Translation. Doctor of Philosophy thesis. University of Sheffield.
Smith, K.S., Aziz, W., & Specia, L. (2015). A proposal for a coherence corpus in machine translation. in proc of the second workshop on discourse in machine translation. 52-58.
Smith, K. S., Aziz, W., & Specia. L. (2016). The trouble with machine translation coherence. in proc of the 19th annual conference of the European association for machine translation. 178- 189.
Zhang, Y., Gan, Z., Fan, K., Chen, Z., Henao, R., Shen, D., & Carin, L. (2017). Adversarial feature matching for text generation. arXiv preprint arXiv:1706.03850.
Siddharthan, A. (2014). A survey of research on text simplification. ITL-International journal of applied linguistics, Vol. 165, No. 2, pp. 259-298.
Song, W., Fu, R., Liu, L., & Liu, T. (2015). Discourse element identification in student essays based on global and local cohesion. In proc of the 2015 conference on empirical methods in natural language processing. 2255-2261.
Kusner, M., Sun, Y., Kolkin, N., & Weinberger, K. (2015). From word embeddings to document distances. in international conference on machine learning. 957- 966.
Lee, G. H., & Lee, K. G. (2017). Automatic text summarization using reinforcement learning with embedding features. In proc of the eighth international joint conference on natural language processing. 2, 193-197.
Severyn, A., & Moschitti, A. (2015). Learning to rank short text pairs with convolutional deep neural networks. in proc of the 38th international ACM SIGIR conference on research and development in information retrieva: ACM.
Severyn, A., & Moschitti, A.(2016). Modeling relational information in question-answer pairs with convolutional neural networks, arXiv preprint arXiv:1604.01178.
Vijayarani, S., Ilamathi, M. G., & Nithya, M. (2015). Preprocessing techniques for text mining-an overview. International journal of computer science & communication networks, Vol. 5, No. 1, pp. 7- 16.
Denny, M. J., & Spirling, A. (2018). Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Political analysis, Vol. 26, No. 2, pp. 168- 189.
Simard, M. (1998). Automatic insertion of accents in French text. in proc of the third conference on empirical methods for natural language processing. 27-35.
https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html
Mikolov, T., & Sutskever, I. (2013). Distributed representations of words and phrases and their compositionality. in proc. NIPS 2013. 3111–3119.
Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language modeling. Computer speech & language, Vol. 10, No. 3, pp. 187-228.
Ermakova, L., Mothe, J., & Firsov, A. (2017). A Metric for sentence ordering assessment based on topic-comment structure. in proc of the 40th international ACM SIGIR conference on research and development in information retrieval. 1061-1064: ACM.";
- صفحات : 1-9
-
دانلود فایل
( 602 KB )