-
آرشیو :
نسخه بهار 1400
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
1381
-
موضوع :
فناوری اطلاعات
-
نویسنده/گان :
زهرا نخعی راد
-
کلید واژه :
داده کاوی، وظایف د اده کاوی، تکنیک های مورد استفاده داده کاوی، کاربردهای داده کاوی
-
مراجع :
[1] Abuaiadah D (2015) Using bisect k-means clustering technique in the analysis of arabic documents. ACM Trans Asian LowResour Lang Inf Process 15(3):1–17
[2] Algergawy A, Mesiti M, Nayak R, Saake G (2011) XML data clustering: an overview. ACM Comput Surv 43(4):1–25
[3] Anderberg MR (2014) Cluster analysis for applications: probability and mathematical statistics: a series of monographs and textbooks, vol 19. Academic Press, USA
[4] Angiulli F, Fassetti F (2013) Exploiting domain knowledge to detect outliers. Data Min Knowl Discov 28(2):519–568
[5] Angiulli F, Fassetti F (2016) Toward generalizing the unification with statistical outliers: the gradient outlier factor measure. ACM Trans Knowl Discov Data 10(3):1–26
[6] Akulwar, P., Pardeshi,S., and Kamble.A.,(2018), "Survey on Different Data Mining Techniques for Prediction," 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2nd International Conference on, Palladam, India, pp. 513-519.
[7] Arora RK, Gupta MK (2017) e-Governance using data warehousing and data mining. Int J Comput Appl 169(8):28–31
[8] Bahari, F.T. & Elayidom, M.S. (2015). An Efficient CRM-Data Mining Framework for the Prediction of Customer Behaviour. Procedia Computer Science. 46. 725-731. 10.1016/j.procs.2015.02.136.
[9] Baker RSJ (2010) Data mining for education. In: McGaw B, Peterson P, Baker E (eds) International encyclopedia of education, 3rd edn. Elsevier, Oxford, UK.
[10] Belle.A., Thiagarajan,R.,. Soroushmehr,SMR, Navidi,F., Beard, D. A. and Najarian,K.,(2015), “Big data analytics in healthcare,” BioMed Research International, vol. 2015, Article ID 370194.
[11] Bhatnagar V, Ahuja S, Kaur S (2015) Discriminant analysisbased cluster ensemble. Int J Data Min Modell Manag 7(2):83–107
[12] Bochicchio,M. ,Cuzzocrea,A. and Vaira.L.(2016), “A big data analytics framework for supporting multidimensional mining over big healthcare data,” in Proceedings of the 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016, pp. 508–513, usa
[13] Bouguessa M (2013) Clustering categorical data in projected spaces. Data Min Knowl Discov 29(1):3–38
[14] Campello RJGB, Moulavi D, Zimek A, Sander J (2015) Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans Knowl Discov Data 10(1):1–51
[15] Carpineto C, Osinski S, Romano G, Weiss D (2009) A survey of web clustering engines. ACM Comput. Surv. 41(3):1–38
[16] Ceglar A, Roddick JF (2006) Association mining. ACM Comput Surv 38(2):1–42 28. Chen YL, Weng CH (2009) Mining fuzzy association rules from questionnaire data. Knowl Based Syst 22(1):46–56
[17] Chen M, Han J, Yu PS (1996) Data mining: an overview from a database perspective. IEEE Trans Knowl Data Eng 8(6):866–883
[18] Chan P. K, Salvatore JS (1997) On the accuracy of metalearning for scalable data mining. J Intell Inf Syst 8:5–28 96.
[19] Chandra P, Gupta MK (2018) Comprehensive survey on data warehousing research. Int J Inform Technol 10(2):217–224
[20] Chen YL, Weng CH (2009) Mining fuzzy association rules from questionnaire data. Knowl Based Syst 22(1):46–56
[21] Craw S., Wiratunga N., Rowe R. C. (2006) Learning adaptation knowledge to improve case-based reasoning. Artif Intell 170:1175–1192
[22] Data mining examples: most common applications of data mining (2019). https://www.softwaretestinghelp.com/datamining-examples/. Accessed 27 Dec 2019
[23] Data mining—applications & trends. https://www.tutorialspoint. com/data_mining/dm_applications_trends.htm
[24] Das R, Kalita J, Bhattacharya (2011) A pattern matching approach for clustering gene expression data. Int J Data Min Model Manag 3(2):130–149
[25] Devi SVSG (2013) Applications and trends in data mining. Orient J Comput Sci Technol 6(4):413–419
[26] Dincer E (2006) The k-means algorithm in data mining and an application in medicine. Kocaeli Univesity, Kocaeli
[27] Du.G, Ruhe G.. (2014) Two machine-learning techniques for mining solutions of the ReleasePlannerTM decision support system. Inf Sci 259:474–489
[28] El Aboudi, N. & Benhlima, L. (2018). Big Data Management for Healthcare Systems: Architecture, Requirements, and Implementation. Advances in Bioinformatics. 2018. 1-10. 10.1155/2018/4059018.
[29] Enke D., Thawornwong S.(2005) The use of data mining and neural networks for forecasting stock market returns. Expert Syst Appl 29:927–940
[30] Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv 45(1):1–34
[31] Fan C.Y., Fan P.Sh., Chan T.Y., Chang Sh.H. (2012) Using hybrid data mining and machine learning clustering analysis to predict the turnover rate for technology professionals. Expert Syst Appl 39:8844–8851
[32] Fayadd U, Piatesky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AAAI Press/The MIT Press, Massachusetts Institute of Technology. ISBN 0–262 56097–6 Fayap
[33] Fayadd U, Piatesky-Shapiro G, Smyth P (1996) Knowledge discovery and data mining: towards a unifying framework. In: Proceedings of the 2nd ACM international conference on knowledge discovery and data mining (KDD), Portland, pp 82–88
[34] Friedman JH (1997) Data mining and statistics: What is the connection? in: Keynote Speech of the 29th Symposium on the Interface: Computing Science and Statistics, Houston, TX, 1997
[35] Fu Y (1997) Data mining: tasks, techniques, and applications. IEEE Potentials 16(4):18–20
[36] Geng L, Hamilton HJ (2006) Interestingness measures for data mining: a survey. ACM Comput Surv 38(3):1–32
[37] Gheware SD, Kejkar AS, Tondare SM (2014) Data mining: tasks, tools, techniques and applications. Int J Adv Res Comput Commun Eng 3(10):8095–8098
[38] Gibert K, Sanchez-Marre M, Codina V (2010) Choosing the right data mining technique: classification of methods and intelligent recommendation. In: International Congress on Environment Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada
[39] Gupta A, Mumick IS (1995) Maintenance of materialized views: problems, techniques, and applications. IEEE Data Eng Bull 18(2):3
[40] Gupta MK, Chandra P (2019) MP-K-means: modified partition based cluster initialization method for k-means algorithm. Int J Recent Technol Eng 8(4):1140–1148
[41] Gupta MK, Chandra P (2019) HYBCIM: hypercube based cluster initialization method for k-means. IJ Innov Technol Explor Eng 8(10):3584–3587. https://doi.org/10.35940/ijitee. j9774.0881019
[42] Gupta MK, Chandra P (2019) A comparative study of clustering algorithms. In: Proceedings of the 13th INDIACom-2019; IEEE Conference ID: 461816; 6th International Conference on ‘‘Computing for Sustainable Global Development’’
[43] Gupta MK, Chandra P (2019) An efficient approach for selection of initial cluster centroids for k-means clustering algorithm. In: Proceedings international conference on recent developments in science engineering and technology (REDSET-2019), November 15–16
[44] Gupta MK, Chandra P (2019) P-k-means: k-means using partition based cluster initialization method. In: Proceedings of the international conference on advancements in computing and management (ICACM 2019), Elsevier SSRN, pp 567–573
[45] Gupta MK, Chandra P (2019) An empirical evaluation of k-means clustering algorithm using different distance/similarity metrics. In: Proceedings of the international conference on emerging trends in information technology (ICETIT-2019), emerging trends in information technology, LNEE 605 pp 884–892
[46] Gupta, M.K. & Chandra, P. (2020). A comprehensive survey of data mining. International Journal of Information Technology. 1-15. 10.1007/s41870-020-00427-7.
[47] Han J, Fu Y (1996) Exploration of the power of attribute-oriented induction in data mining. Adv Knowl Discov Data Min. AAAI/MIT Press, pp 399-421
[48] Han J, Kamber M, Pei J (2012) Data mining concepts and techniques, 3rd edn. Elsevier, Netherlands
[49] Hea Z, Xua X, Huangb JZ, Denga S (2004) Mining class outliers: concepts, algorithms and applications in CRM. Expert Syst Appl 27(4):681e97
[50] Heckerman D (1998) A tutorial on learning with Bayesian networks. Learning in graphical models. Springer, Netherlands, pp 301–354
[51] Heikki M (1996) Data mining: machine learning, statistics, and databases. In: SSDBM ’96: proceedings of the eighth international conference on scientific and statistical database management, June 1996, pp 2–9
[52] Hu¨llermeier E. (2005) Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst 156:387–406
[53] Hullermeier E. (2011) Fuzzy sets in machine learning and data mining. Appl Soft Comput 11:1493–1505
[54] Hung LN, Thu TNT, Nguyen GC (2015) An efficient algorithm in mining frequent itemsets with weights over data stream using tree data structure. IJ Intell Syst Appl 12:23–31
[55] Huang Mu-Jung, Tsou Yee-Lin, Lee Show-Chin (2006) Integrating fuzzy data mining and fuzzy artificial neural networks for discovering implicit knowledge. Knowl Based Syst 19:396–403
[56] Hung LN, Thu TNT (2016) Mining frequent itemsets with weights over data stream using inverted matrix. IJ Inf Technol Comput Sci 10:63–71
[57] Jackson J (2002) Data mining: a conceptual overview. Commun Assoc Inf Syst 8:267–296
[58] Jain N, Srivastava V (2013) Data mining techniques: a survey paper. Int J Res Eng Technol 2(11):116–119
[59] Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput. Surv 31(3):1–60
[60] Jin H, Wang S, Zhou Q, Li Y (2014) An improved method for density-based clustering. Int J Data Min Model Manag 6(4):347–368
[61] Kanevski M, Parkin R, Pozdnukhov A, Timonin V, Maignan M, Demyanov V, Canu S (2004) Environmental data mining and modelling based on machine learning algorithms and geostatistics. Environ Model Softw 19:845–855.
[62] Keles¸ MK (2017) An overview: the impact of data mining applications on various sectors. Tech J 11(3):128–132
[63] Khandare A, Alvi AS (2017) Performance analysis of improved clustering algorithm on real and synthetic data. IJ Comput Netw Inf Secur 10:57–65
[64] Kiranmai B, Damodaram A (2014) A review on evaluation measures for data mining tasks. Int J Eng Comput Sci 3(7):7217–7220
[65] Koh YS, Ravana SD (2016) Unsupervised rare pattern mining: a survey. ACM Trans Knowl Discov Data 10(4):1–29
[66] Kosina P, Gama J (2015) Very fast decision rules for classification in data streams. Data Min Knowl Discov 29(1):168–202
[67] Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268
[68] Kumar D, Bezdek JC, Rajasegarar S, Palaniswami M, Leckie C, Chan J, Gubbi J (2016) Adaptive cluster tendency visualization and anomaly detection for streaming data. ACM Trans Knowl Discov Data 11(2):1–24
[69] Kuzey C, Uyar A, Delen (2014) The impact of multinationality on firm value: a comparative analysis of machine learning techniques. Decis Support Syst 59:127–142
[70] Lee G, Yun U (2017) A new efficient approach for mining uncertain frequent patterns using minimum data structure without false positives. Future Gener Comput Syst 68:89–110
[71] Lew A, Mauch H (2006) Introduction to data mining and its applications. Springer, Berlin
[72] Liao TW, Triantaphyllou E (2007) Recent advances in data mining of enterprise data: algorithms and applications. World Scientific Publishing, Singapore, pp 111–145
[73] Liao SH, Chu PH, Hsiao PY (2012) Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst Appl 39:11303–11311
[74] Li G, Zaki MJ (2015) Sampling frequent and minimal boolean patterns: theory and application in classification. Data Min Knowl Discov 30(1):181–225. https://doi.org/10.1007/s10618- 015-0409-y
[75] Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining algorithms. ACM Comput Surv 43:1
[76] Maheshwari, A. K.(2015), Business intelligence and data mining. New York, NY : Business Expert Press.
[77] Mampaey M, Vreeken J (2011) Summarizing categorical data by clustering attributes. Data Min Knowl Discov 26(1):130–173
[78] Menardi G, Torelli N (2012) Training and assessing classification rules with imbalanced data. Data Min Knowl Discov 28(1):4–28. https://doi.org/10.1007/s10618-012-0295-5
[79] Mezyk E., Unold O. (2011) Machine learning approach to model sport training. Comput Hum Behav 27:1499–1506
[80] Mihoci A (2017) Modelling limit order book volume covariance structures. In: Hokimoto T (ed) Advances in statistical methodologies and their application to real problems. IntechOpen, Croatia. https://doi.org/10.5772/66152
[81] Moawia,E. Yahia ME, El-taher ME (2010) A new approach for evaluation of data mining techniques. Int J Comput Sci Issues 7(5):181–186
[82] Morik K, Bhaduri K, Kargupta H (2011) Introduction to data mining for sustainability. Data Min Knowl Discov 24(2):311–324
[83] Mukherjee S, Shaw R, Haldar N, Changdar S (2015) A survey of data mining applications and techniques. Int J Comput Sci Inf Technol 6(5):4663–4666
[84] Mukhopadhyay A, Maulik U, Bandyopadhyay S (2015) A survey of multiobjective evolutionary clustering. ACM Comput Surv 47(4):1–46
[85] Olaronke.I., Oluwaseun,O., (2016), Bigatan ealthcare:
[86] Prospects, challenges and resolutions,” in Proceedings of the 2016 Future Technologies Conference, FTC 2016, pp. 1152–1157, usa.
[87] Padhy N, Mishra P, Panigrahi R (2012) A survey of data mining applications and future scope. Int J Comput Sci Eng Inf Technol 2(3):43–58
[88] Padhraic S (2000) Data mining: analysis on grand scale. Stat Method Med Res 9(4):309–327. https://doi.org/10.1191/ 096228000701555181
[89] Pagels, D. A.(2015), “Aviation Data Mining,” Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, vol. 2(1), Article 3.
[90] Pei Y, Fern XZ, Tjahja TV, Rosales R (2016) ‘Comparing clustering with pairwise and relative constraints: a unified framework. ACM Trans Knowl Discov Data 11:2
[91] Politano PM, Walton RO (2017) Statistics & research methodol. Lulu. com
[92] Ponniah P (2001) Data warehousing fundamentals. Wiley, USA
[93] Rafalak M, Deja M, Wierzbicki A, Nielek R, Kakol M (2016) Web content classification using distributions of subjective quality evaluations. ACM Trans Web 10:4
[94] Raghupathi,W., Raghupathi,V.,(2014), “Big data analytics in healthcare: promise and potential,” Health Information Science and Systems, vol. 2, article 3
[95] Reddy D, Jana PK (2014) A new clustering algorithm based on Voronoi diagram. Int J Data Min Model Manag 6(1):49–64
[96] Rustogi S, Sharma M, Morwal S (2017) Improved Parallel Apriori Algorithm for Multi-cores. IJ Inf Technol Comput Sci 4:18–23
[97] Saranya,K., Premalatha,K., and Rajasekar, S.S.,(2015), "A survey on privacy preserving data mining," 2015 2nd International Conference on Electronics and Communication Systems (ICECS), Coimbatore, pp. 1740-1744, doi: 10.1109/ECS.2015.7124885.
[98] Saeed S, Ali M (2012) Privacy-preserving back-propagation and extreme learning machine algorithms. Data Knowl Eng 79–80:40–61
[99] Sawant V, Shah K (2013) A review of distributed data mining using agents. Int J Adv Technol Eng Res 3(5):27–33.
[100] Shah-Hosseini H (2013) Improving K-means clustering algorithm with the intelligent water drops (IWD) algorithm. Int J Data Min Model Manag 5(4):301–317
[101] Sharma M (2014) Data mining: a literature survey. Int J Emerg Res Manag Technol 3(2):1–4
[102] Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho ACPLF, Gama J (2013) Data stream clustering: a survey. ACM Comput Surv 46(1):1–31
[103] Silva A, Antunes C (2014) Multi-relational pattern mining over data streams. Data Min Knowl Discov 29(6):1783–1814. https:// doi.org/10.1007/s10618-014-0394-6
[104] Singh Y, Bhatia PK, Sangwan OP (2007) A review of studies on machine learning techniques. Int J Comput Sci Secur 1(1):70–84
[105] Sim K, Gopalkrishnan V, Zimek A, Cong G (2012) A survey on enhanced subspace clustering. Data Min Knowl Discov 26(2):332–397
[106] Smith Kate A, Gupta Jatinder ND (2000) Neural networks in business: techniques and applications for the operations researcher. Comput Oper Res 27:1023–1044
[107] Sohrabi MK, Roshani R (2017) Frequent itemset mining using cellular learning automata. Comput Hum Behav 68:244–253
[108] Sun,J., Reddy,C.K.(2013), “Big data analytics for healthcare,” in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, p. 1525, Chicago, Ill, USA
[109] Tan KC, Teoh EJ, Yua Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst Appl 36(4):8616–8630
[110] Tew C, Giraud-Carrier C, Tanner K, Burton S (2013) Behaviorbased clustering and analysis of interestingness measures for association rule mining. Data Min Knowl Discov 28(4):1004–1045
[111] Thompson B (2004) Exploratory and confirmatory factor analysis: understanding concepts and applications. American Psychological Association, Washington, DC (ISBN:1-59147-093-5)
[112] Top 14 useful applications for data mining. https://bigdatamadesimple.com/14-useful-applications-of-data-mining/. Accessed 20 Aug 2014
[113] Tsai Ch.-F., Hsu Y.-F., Lin Ch.-Y., Lin W.-Y.g (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36:11994–12000
[114] Turban E, Aronson JE, Liang TP, Sharda R (2007) Decision support and business intelligence systems. 8th edn, Pearson Education, UK
[115] Venkatadri M, Reddy LC (2011) A review on data mining from past to the future. Int J Comput Appl 15(7):19–22
[116] Wang B, Rahal I, Dong A (2011) Parallel hierarchical clustering using weighted confidence affinity. Int J Data Min Model Manag 3(2):110–129
[117] Wang F, Sun J (2014) Survey on distance metric learning and dimensionality reduction in data mining. Data Min Knowl Discov 29:534–564
[118] Wang L, Dong M (2015) Exemplar-based low-rank matrix decomposition for data clustering. Data Min Knowl Discov 29:324–357
[119] Weiss SH, Indurkhya N (1998) Predictive data mining: a practical guide. Morgan Kaufmann Publishers, San Francisco
[120] Wetherill GB (1987) Regression analysis with application. Chapman & Hall Ltd, UK
[121] Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Making 5(4):597–604
[122] Zacharis NZ (2018) Classification and regression trees (CART) for predictive modeling in blended learning. IJ Intell Syst Appl 3:1–9
[123] Zhang W, Li R, Feng D, Chernikov A, Chrisochoides N, Osgood C, Ji S (2015) Evolutionary soft co-clustering: formulations, algorithms, and applications. Data Min Knowl Discov 29:765–79
- صفحات : 62-89
-
دانلود فایل
( 750.07 KB )